An Appearance Based Approach to Human and Object Tracking
ثبت نشده
چکیده
We present an approach for tracking people and detecting human-object interactions using monocamera surveillance video. The approach is based on a robust appearance based correlogram mode l which combines histogram information to model color distributions of people and objects in the scene. The models are dynamically built from non-stationary objects which are the outputs of background subtraction, and are used to track objects on a frame-by-frame basis. We are able to detect when people merge into groups and to segment them even during partial occlusion. We can also detect when a person deposits or removes an object. The models persist when a person or object leaves the scene and are used to identify them when they reappear. Experiments show that the models are able to accommodate perspective foreshortenings that occur with overhead camera angles, as well as partial occlusion. The results show that this is an effective approach able to provide important information to algorithms performing higher -level analysis such as activity recognition, where human-object interactions play an important role.
منابع مشابه
Moving Vehicle Tracking Using Disjoint View Multicameras
Multicamera vehicle tracking is a necessary part of any video-based intelligent transportation system for extracting different traffic parameters such as link travel times and origin/destination counts. In many applications, it is needed to locate traffic cameras disjoint from each other to cover a wide area. This paper presents a method for tracking moving vehicles in such camera networks. The...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملUsing a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملAn Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload
In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004